As a Java engineer in the web development industry for several years now, having heard multiple times that X is good because of SOLID principles or Y is bad because it breaks SOLID principles, and having to memorize the “good” ways to do everything before an interview etc, I find it harder and harder to do when I really start to dive into the real reason I’m doing something in a particular way.
One example is creating an interface for every goddamn class I make because of “loose coupling” when in reality none of these classes are ever going to have an alternative implementation.
Also the more I get into languages like Rust, the more these doubts are increasing and leading me to believe that most of it is just dogma that has gone far beyond its initial motivations and goals and is now just a mindless OOP circlejerk.
There are definitely occasions when these principles do make sense, especially in an OOP environment, and they can also make some design patterns really satisfying and easy.
What are your opinions on this?
Java is bad but object-based message-passing environments are good. Classes are bad, prototypes are also bad, and mixins are unsound. That all said, you’ve not understood
SOLIDyet!SandOsay that just because one class is Turing-complete (with general recursion, calling itself) does not mean that one class is the optimal design; they can be seen as opinions rather than hard rules.Lis literally a theorem of any non-shitty type system; the fact that it fails in Java should be seen as a fault of Java.Iis merely the idea that a class doesn’t have to implement every interface or be coercible to any type; that is, there can be non-printable non-callable non-serializable objects. Finally,Dis merely a consequence of objects not being functions; when we want to apply a functionfto a valuexbut both are actually objects, bothf.call(x)andx.getCalled(f)open a new stack frame withfandxlocal, and all of the details are encapsulation details.So, 40%, maybe?
Sreally is not that unreasonable on its own; it reminds me of a classic movie moment from “Meet the Parents” about how a suitcase manufacturer may have produced more than one suitcase. We do intend to allocate more than one object in the course of operating the system! But also it perhaps goes too far in encouraging folks to break up objects that are fine as-is.Omakes a lot of sense from the perspective that code is sometimes write-once immutable such that a new version of a package can add new classes to a system but cannot change existing classes. Outside of that perspective, it’s not at all helpful, because sometimes it really does make sense to refactor a codebase in order to more efficiently use some improved interface.One example is creating an interface for every goddamn class I make because of “loose coupling” when in reality none of these classes are ever going to have an alternative implementation.
Not only loose coupling but also performance reasons. When you initialise a class as it’s interface, the size of the method references you load on the method area of the memory (which doesn’t get garbage collected BTW) is reduced.
Also the more I get into languages like Rust, the more these doubts are increasing and leading me to believe that most of it is just dogma that has gone far beyond its initial motivations and goals and is now just a mindless OOP circlejerk.
In my experience, not following SOLID principles makes your application an unmaintainable mess in roughly one year. Though SOLID needs to be coupled with better modularity to be effective.
One example is creating an interface for every goddamn class I make because of “loose coupling” when in reality none of these classes are ever going to have an alternative implementation.
Sounds like you’ve learned the answer!
Virtual all programming principles like that should never be applied blindly in all situations. You basically need to develop taste through experience… and caring about code quality (lots of people have experience but don’t give a shit what they’re excreting).
Stuff like DRY and SOLID are guidelines not rules.
What about KISS ? Now this SHOULD be a rule. Simple is the best
DRY SOLID KISS
The principles are perfectly fine. It’s the mindless following of them that’s the problem.
Your take is the same take I see with every new generation of software engineers discovering that things like principles, patterns and ideas have nuance to them. Who when they see someone applying a particular pattern without nuance think that is what the pattern means.
And then you have clean code. Clean code is like cooking with California Reapers. Some people swear on it and a tiny bit of Clean Code in your code base has never hurt anyone. But use it as much as the book recommends and I’m gonna vomit all day long.
if you have the time, a really good talk on the subject and history.
YAGNI ("you aren’t/ain’t gonna need it) is my response to making an interface for every single class. If and when we need one, we can extract an interface out. An exception to this is if I’m writing code that another team will use (as opposed to a web API) but like 99% of code I write only my team ever uses and doesn’t have any down stream dependencies.
I’m making a separate comment for this, but people saying “Liskov substitution principle” instead of “Behavioral subtyping” generally seem more interested in finding a set of rules to follow rather than exploring what makes those rules useful. (Context, the L in solid is “Liskov substitution principle.”) Barbra Liskov herself has said that the proper name for it would be behavioral subtyping.
In an interview in 2016, Liskov herself explains that what she presented in her keynote address was an “informal rule”, that Jeannette Wing later proposed that they “try to figure out precisely what this means”, which led to their joint publication [A behavioral notion of subtyping], and indeed that “technically, it’s called behavioral subtyping”.[5] During the interview, she does not use substitution terminology to discuss the concepts.
You can watch the video interview here. It’s less than five minutes. https://youtu.be/-Z-17h3jG0A
The main thing you are missing is that “loose coupling” does not mean “create an interface”. You can have all concrete classes and loose coupling or all classes with interfaces and strong coupling. Coupling is not about your choice of implementation, but about which part does what.
If an interface simplifies your code, then use interfaces, if it doesn’t, don’t. The dogma of “use an interface everywhere” comes from people who saw good developers use interfaces to reduce coupling, while not understanding the context in which it was used, and then just thought “hey so interfaces reduce coupling I guess? Let’s mandate using it everywhere!”, which results in using interfaces where they aren’t needed, while not actually reducing coupling necessarily.
As a dev working on a large project using gradle, a lot of the time interfaces are useful as a means to avoid circular dependencies while breaking things up into modules. It can also really boost build times if modules don’t have to depend on concrete impls, which can kill the parallelization of the build. But I don’t create interfaces for literally everything, only if a type is likely going to be used across module boundaries. Which is a roundabout way of saying they reduce coupling, but just noting it as a practical example of the utility you gain.
deleted by creator
I think a large part of interfaces everywhere comes from unit testing and class composition. I had to create an interface for a Time class because I needed to test for cases around midnight. It would be nice if testing frameworks allowed you to mock concrete classes (maybe you can? I haven’t looked into it honestly) it could reduce the number of unnecessary interfaces.
You’ve been able to mock concrete classes in Java for like a decade or so, probably longer. As long as I can remember at least. Using Mockito it’s super easy.
At least in C# with Moq you can only mock virtual methods of concrete classes, so using interfaces is still nicer in general.
Yeah Moq is what I used when I worked with .NET.
On an unrelated note; god I miss .NET so much. Fuck Microsoft and all that, but man C# and .NET feels so good for enterprise stuff compared to everything else I’ve worked with.
This was definitely true in the Java world when mocking frameworks only allowed you to mock interfaces.
My somewhat hot take is that design patterns and SOLID are just tools created to overcome the shortcomings of bad OOP languages.
When I use Rust, I don’t really think about design patterns or SOLID or anything like that. Sure, Rust has certain idiomatic patterns that are common in the ecosystem. But most of these patterns are very Rust-specific and come down to syntax rather than semantics. For instance the builder pattern, which is tbh also another tool to overcome one of Rust’s shortcomings (inability to create big structs easily and flexibly).
I think you’re completely correct that these things are dogma (or “circlejerking” if you prefer that term). Just be flexible and open minded in how you approach problems and try to go for the simplest solution that works. KISS and YAGNI are honestly much better principles to go by than SOLID or OOP design patterns.
I think that OOP is most useful in two domains: Device drivers and graphical user interfaces. The Linux kernel is object-oriented.
OOP might also be useful in data structures. But you can as well think about them as “data structures with operations that keep invariants” (which is an older concept than OOP).
Yep, streams, pipes and files are all good examples of things that are an entity with associated operations.
I think the general path to enlightenment looks like this (in order of experience):
- Learn about patterns and try to apply all of them all the time
- Don’t use any patterns ever, and just go with a “lightweight architecture”
- Realize that both extremes are wrong, and focus on finding appropriate middle ground in each situation using your past experiences (aka, be an engineer rather than a code monkey)
Eventually, you’ll end up “rediscovering” some parts of SOLID on your own, applying them appropriately, and not even realize it.
Generally, the larger the code base and/or team (which are usually correlated), the more that strict patterns and “best practices” can have a positive impact. Sometimes you need them because those patterns help wrangle complexity, other times it’s because they help limit the amount of damage incompetent teammates can do.
But regardless, I want to point something out:
the more these doubts are increasing and leading me to believe that most of it is just dogma that has gone far beyond its initial motivations and goals and is now just a mindless OOP circlejerk.
This attitude is a problem. It’s an attitude of ignorance, and it’s an easy hole to fall into, but difficult to get out of. Nobody is “circlejerking OOP”. You’re making up a strawman to disregard something you failed at (eg successful application of SOLID principles). Instead, perform some introspection and try to analyze why you didn’t like it without emotional language. Imagine you’re writing a postmortem for an audience of colleagues.
I’m not saying to use SOLID principles, but drop that attitude. You don’t want to end up like those annoying guys who discovered their first native programming language, followed a Vulkan tutorial, and now act like they’re on the forefront of human endeavor because they imported a GLTF model into their “game engine” using assimp…
A better attitude will make you a better engineer in the long run :)
I dunno, I’ve definitely rolled into “factory factory” codebases that are abstraction astronauts just going to town over classes that only have one real implementation over a decade and seen how far the cargo culting can go.
It’s the old saying “give a developer a tool, they’ll find a way to use it.” Having a distataste for mindless dogmatic application of patterns is healthy for a dev in my mind.
You’ve described my journey to a tea. You eventually find your middle ground which is sadly not universal and thus, we shall ever fight the stack overflow wars.
Also the more I get into languages like Rust, the more these doubts are increasing and leading me to believe that most of it is just dogma that has gone far beyond its initial motivations and goals and is now just a mindless OOP circlejerk.
There are definitely occasions when these principles do make sense, especially in an OOP environment, and they can also make some design patterns really satisfying and easy.
Congratulations. This is where you wind up, long after learning the basics and start interacting with lots of code in the wild. You are not alone.
Implementing things with pragmatism, when it comes to conventions and design patterns, is how it’s really done.
Two words: cargo cult.
99% of code is too complicated for what it does because of principles like SOLID, and because of OOP.
Algorithms can be complex, but the way a system is put together should never be complicated. Computers are incredibly stupid, and will always perform better on linear code that batches similar operations together, which is not so coincidentally also what we understand best.
Our main issue in this industry is not premature optimisation anymore, but premature and excessive abstraction.
This is crazy misattribution.
99% of code is too complicated because of inexperienced programmers making it too complicated. Not because of the principles that they mislabel and misunderstood.
Just because I forcefully and incorrectly apply a particular pattern to a problem it is not suited to solve for doesn’t mean the pattern is the problem. In this case, I, the developer, am the problem.
Everything has nuance and you should only use in your project the things that make sense for the problems you face.
Crowbaring a solution to a problem a project isn’t dealing with into that project is going to lead to pain
why this isn’t a predictable outcome baffles me. And why attribution for the problem goes to the pattern that was misapplied baffles me even further.
No. These principles are supposedly designed to help those inexperienced programmers, but in my experience, they tend to do the opposite.
The rules are too complicated, and of dubious usefulness at best. Inexperienced programmers really need to be taught to keep things radically simple, and I don’t mean “single responsibility” or “short functions”.
I mean “stop trying to be clever”.
If it makes the code easier to maintain it’s good. If it doesn’t make the code easier to maintain it is bad.
Making interfaces for everything, or making getters and setters for everything, just in case you change something in the future makes the code harder to maintain.
This might make sense for a library, but it doesn’t make sense for application code that you can refactor at will. Even if you do have to change something and it means a refactor that touches a lot, it’ll still be a lot less work than bloating the entire codebase with needless indirections every day.
True. Open-closed principal is particularly applicable to library code, but a waste much of the time in a consuming application, where you will be modifying code much more.
I call it mario driven development, because oh no! The princess is in a different castle.
You end up with seemingly no code doing any actual work.
You think you found the function that does the thing you want to debug? Nope, it defers to a different function, which calls a a method of an injected interface, which creates a different process calling into a virtual function, which loads a dll whose code lives in a different repo, which runs an async operation deferring the result to some unspecified later point.
And some of these layers silently catch exceptions eating the useful errors and replacing them with vague and useless ones.
Getters and setters are superfluous in most cases, because you do not actually want to hide complexity from your users.
To use the usual trivial example : if you change your circle’s circumference from a property to a function, I need to know ! You just replaced a memory access with some arithmetic ; depending in my behaviour as a user this could be either great or really bad for my performance.
Yeah, this. Code for the problem you’re solving now, think about the problems of the future.
Knowing OOP principles and patterns is just a tool. If you’re driving nails you’re fine with a hammer, if you’re cooking an egg I doubt a hammer is necessary.
Exactly this. And to know what code is easy to maintain you have to see how couple of projects evolve over time. Your perspective on this changes as you gain experience.
I remember the recommendation to use a typedef (or #define 😱) for integers, like INT32.
If you like recompile it on a weird CPU or something I guess. What a stupid idea. At least where I worked it was dumb, if someone knows any benefits I’d gladly hear it!
We had it because we needed to compile for Windows and Linux on both 32 and 64 bit processors. So we defined all our Int32, Int64, uint32, uint64 and so on. There were a bunch of these definitions within the core header file with #ifndef and such.
But you can use 64 bits int on a 32 bits linux, and vice versa. I never understood the benefits from tagging the stuff. You gotta go so far back in time where an int isn’t compiled to a 32 bit signed int too. There were also already long long and size_t… why make new ones?
Readability maybe?
Very often you need to choose a type based on the data it needs to hold. If you know you’ll need to store numbers of a certain size, use an integer type that can actually hold it, don’t make it dependent on a platform definition. Always using
intcan lead to really insidious bugs where a function may work on one platform and not on another due to overfloeShow me one.
I mean I have worked on 16bits platforms, but nobody would use that code straight out of the box on some other incompatible platform, it doesn’t even make sense.
Basically anything low level. When you need a byte, you also don’t use a
int, you use auint8_t(reminder thatcharis actually not defined to be signed or unsigned, “Plain char may be signed or unsigned; this depends on the compiler, the machine in use, and its operating system”). Any time you need to interact with another system, like hardware or networking, it is incredibly important to know how many bits the other side uses to avoid mismatching.For purely the size of an
int, the most famous example is the Ariane 5 Spaceship Launch, there an integer overflow crashed the space ship. OWASP (the Open Worldwide Application Security Project) lists integer overflows as a security concern, though not ranked very highly, since it only causes problems when combined with buffer accesses (using user input with some arithmetic operation that may overflow into unexpected ranges).And the byte wasn’t obliged to have 8 bits.
Nice example, but I’d say it’skind of niche 😁 makes me remember the underflow in a video game, making the most peaceful npc becoming a warmongering lunatic. But that would not have been helped because of defines.
It was a while ago indeed, and readability does play a big role. Also, it becomes easier to just type it out. Of course auto complete helps, but it’s just easier.
If you’re directly interacting with any sort of binary protocol, i.e. file formats, network protocols etc., you definitely want your variable types to be unambiguous. For future-proofing, yes, but also because because I don’t want to go confirm whether I remember correctly that
longis the same size asint.There’s also clarity of meaning;
unsigned long longis a noisy monstrosity,uint64_tconveys what it is much more cleanly.charis great if it’s representing text characters, but if you have a byte array of binary data, using a type alias helps convey that.And then there are type aliases that are useful because they have different sizes on different platforms like
size_t.I’d say that generally speaking, if it’s not an
intor achar, that probably means the exact size of the type is important, in which case it makes sense to convey that using a type alias. It conveys your intentions more clearly and tersely (in a good way), it makes your code more robust when compiled for different platforms, and it’s not actually more work; that extrayou may need to add pays for itself pretty quickly.So we should not have #defines in the way, right?
Like INT32, instead of “int”. I mean if you don’t know the size you probably won’t do network protocols or reading binary stuff anyways.
uint64_t is good IMO, a bit long (why the _t?) maybe, but it’s not one of the atrocities I’m talking about where every project had its own defines.
“int” can be different widths on different platforms. If all the compilers you must compile with have standard definitions for specific widths then great use em. That hasn’t always been the case, in which case you must roll your own. I’m sure some projects did it where it was unneeded, but when you have to do it you have to do it
So show me two compatible systems where the int has different sizes.
This is folklore IMO, or incompatible anyways.
RPython, the toolchain which is used to build JIT compilers like PyPy, supports Windows and non-Windows interpretations of standard Python
int. This leads to an entire module’s worth of specialized arithmetic. In RPython, the usual approach to handling the size of ints is to immediately stop worrying about it and let the compiler tell you if you got it wrong; an int will have at least seven-ish bits but anything more is platform-specific. This is one of the few systems I’ve used where I have to cast from an int to an int because the compiler can’t prove that the ints are the same size and might need a runtime cast, but it can’t tell me whether it does need the runtime cast.Of course, I don’t expect you to accept this example, given what a whiner you’ve been down-thread, but at least you can’t claim that nobody showed you anything.
Bravo, you found an example!
You’re right, we should start using #define INT32 again…
Incompatible? It is for cross platform code. Wtf are you even talking about
Okay, then give me an example where this matters. If an int hasn’t the same size, like on a Nintendo DS and Windows (wildly incompatible), I struggle to find a use case where it would help you out.
The standard type aliases like
uint64_tweren’t in the C standard library until C99 and in C++ until C++11, so there are plenty of older code bases that would have had to define their own.The use of
to make type aliases never made sense to me. The earliest versions of C didn’t havetypedef, I guess, but that’s like, the 1970s. Anyway, you wouldn’t do it that way in modern C/C++.I’ve seen several codebases that have a typedef or using keyword to map uint64_t to uint64 along with the others, but _t seems to be the convention for built-in std type names.
Iirc, _t is to denote a reserved standard type names.
Really well said!









